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This paper introduces a new technique for early identi"cation of spur gear tooth fatigue
cracks, namely the Kolmogorov}Smirnov test. This test works on the null hypotheses that
the cumulative density function (CDF) of a target distribution is statistically similar to
the CDF of a reference distribution. In e!ect, this is a time-domain signal processing
technique that compares two signals, and returns the likelihood that the two signals have the
same probability distribution function. Based on this estimate, it is possible to determine
whether the two signals are similar or not. Therefore, by comparing a given vibration
signature to a number of template signatures (i.e., signatures from known gear conditions) it
is possible to state which is the most likely condition of the gear under analysis. It must be
emphasised that this is not a moment technique as it uses the whole CDF, instead of sections
of the cumulative density function. In this paper, this technique is applied to the speci"c
problem of fatigue crack detection. Here, it is shown that this test not only successfully
identi"es the presence of the fatigue cracks but also gives an indication related to the
advancement of the crack. Furthermore, this technique identi"es cracks that are not
identi"ed by popular methods based on the statistical moment analysis of the vibration
signature. This shows that, despite its simplicity, the Kolmogorov}Smirnov test is an
extremely powerful method that e!ectively classi"es di!erent vibration signatures, allowing
for its safe use as another condition monitoring technique.
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1. INTRODUCTION

In this paper, the problem of fatigue crack identi"cation is tackled. This is a real problem
that has already been studied by a number of researchers using a wide range of approaches.
Particular attention must be paid to the work of McFadden [1], which uses phase
modulations of the gear meshing frequency for crack identi"cation, the work of Boulahbal
[2], which uses the wavelet transform and the work of Lin [3], which uses a non-linear
dynamical systems approach. All these methods are e!ective; however, none are simple to
implement and interpret.

In the search for a simple but e!ective technique the Kolmogorov}Smirnov (KS) test
was found. This is a time-domain statistical tool suitable for comparing unbinned
distributions. It has already been successfully used in "elds ranging from astronomy [4]
and biology [5] to identi"cation of periodicity in signals [6]. However, the technique has
not yet been applied to the analysis of vibration signatures from a condition monitoring
point of view.
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This paper shows how the KS test can be used to identify successfully the presence
of fatigue cracks on spur gears. In all, four di!erent gear conditions are tested, namely,
new gears, normal operating gears, worn-out gears and faulty (fatigue crack) gears.
The faulty gears are subdivided into three categories according to fatigue crack
advancement.

2. THEORETICAL BACKGROUND

The KS test works on the null hypotheses that the cumulative density function (CDF) of
the target distribution, denoted by F(x), is statistically similar to the CDF for a reference
distribution, R(x). Hence, it is possible to compare two vibration signatures, and assess if
both have the same, or statistically similar, CDFs. Note that the application of this test for
condition monitoring assumes that the fault is strong enough to cause a variation in the
CDF of the original vibration signature, which is the case of fatigue cracks and many other
gear mechanical faults.

The KS test is applicable to unbinned distributions that are functions of a single
independent variable. In these cases, the digitised &&list of data points'' can be readily
converted into an unbiased estimator of the CDF, giving some insight about the probability
distribution function from which the data were drawn.

It is a fact that di!erent data sets, or di!erent distribution functions, give di!erent CDFs.
In this sense, one can establish the likelihood that two sets of data originate from the same
distribution function by measuring the di!erences between their CDFs. A number of
statistics can be used to measure the overall di!erence between two CDFs. In this work, the
simple measure of maximum absolute distance between the CDFs was used.

From the two CDFs, F (x) and R(x), a statistic distance D can be calculated. Here, this
distance is de"ned as the maximum absolute di!erence between F(x) and R (x).
Mathematically, this is represented by

D" max
~=:x:=

DF(x)!R(x) D. (1)

The statistical distance D can be converted into a similarity probability using the KS
probability distribution function Q
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Finally, the KS distribution function is de"ned as
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This is a monotonic function with limiting values of

Q
KS

(j)"G
1 as jP0,

0 as jPR.
(5)

Hence, if the two vibration signatures are similar (i.e., have statistically similar CDFs), then
the similarity probability tends to 1. On the other hand, if the signatures are di!erent, then
the similarity probability tends to 0.

3. NUMERICAL EXAMPLE

The numerical examples presented in this section aims to illustrate the processes involved
in the KS test. Here, three numerically generated time series are compared. The "rst two
signatures are sine waves (frequency of 200 Hz and amplitude"1) and the third signature is
that of a triangular wave (frequency of 200 Hz and amplitude"1). Random white
noise was added to these signatures. The power of the added white noise is constant for all
three signatures and represents 15% of the total signal power. Finally, all signatures were
sampled at 1000 Hz, obeying the Nyquist theorem to prevent aliasing errors of the
fundamental waveform. However, it must be noted that this sampling frequency will not
allow for the detection of the very high frequencies present in the sharp peaks of triangular
waves. Figure 1 shows these signatures in the time domain.

As can be seen, at this low sampling frequency, it is impossible to distinguish the three
signatures by visual observation of the time domain plots. In fact, the visual observation of
these plots suggest that the signatures share a similar basic component and the di!erences
observed can be attributed to noise.

Using the KS test to compare the 200 Hz sine wave with the 200 Hz triangular wave
(both sampled at 1000 Hz) gives a similarity probability of 0, indicating that these two
signals are in fact statistically di!erent. This similarity probability is found by comparing
the maximum absolute di!erence between the CDFs. In this example D"0)024, and is
found by plotting the CDF for the two signatures under analysis, and calculating their
maximum absolute di!erence (equation (1)). Figure 2 illustrates this process, showing the
CDF for the sine and the triangular wave signal (CDF axis on the left), and the absolute
di!erence &d' between the CDFs (d-axis on the right). Note that these axis have di!erent
scales to allow for the visualisation of the absolute distance between the CDFs.

The statistical distance D"0)024 is then fed into equation (2), which gives a probability
indicating whether the two CDFs are statistically similar. In equation (2), N

e
"512 (i.e.,

10242/2048).
Figure 1. Numerical signatures to be compared: (*e*), Sin#noise 1; (*n*), Sin#noise 2; (*s*),
Tri#noise 3.



Figure 2. CDF distance for di!erent signatures. (*h*), Sin CDF; (---]---), Trian. CDF; (*s*), d.
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In this example, the similarity probability between the CDF of the sine and triangular
waves equalled zero, showing that the two CDFs are statistically di!erent. Applying the
same process to the two sine waves (with added random white noise) a similarity probability
of 0)92 was obtained, indicating that the two signals are statistically highly similar, with
minor di!erences due to the added random noise. This example shows the characterization
power, which is an important trait of the KS test.

4. EXPERIMENTAL SET-UP AND DATA COLLECTION

In order to investigate the performance of the KS test for fatigue crack identi"cation
a test rig was set-up. This modelled a drive-line and allowed for the collection of vibration
signatures from the rotating gears. The test rig contains common components present in
a real drive-line using meshing gears (i.e., gears, shafts, bearings and couplings). The layout
for the rig is shown in Figure 3 and details can be obtained in reference [8].

In this set-up, the driven gear was the object of observation. The same driving gear was
used throughout the whole experiment and the driven gear was substituted with test gears
in di!erent conditions, namely, new, normal, worn-out and faulty gears (with fatigue cracks
of di!erent severity). The gears used in the experiments were manufactured by Davall Gears
following the standards DIN3965, and DIN3962. Table 1 summarizes the gear properties.

The gear under observation had a rotational speed of 5 Hz (periodic time 0)2 s) and
a constant load of 20 Nm, applied by a pneumatic brake on a brake disc attached to the
driven shaft. The vibration signatures were recorded by a magnet-mounted accelerometer
placed on the bearing housing adjacent to the driven gear. A sample rate of 5)12 kHz was
used to record vibration signatures with 2048 samples. This is equivalent to two full
revolutions of the driven gear.

On the driven output shaft, a key and a proximity sensor was used to generate a reference
signal (pulse) on the start of each revolution. This signal was also captured by the A/D
converter and served as a trigger, indicating the start of each new revolution. This trigger
signal was of utmost importance to ensure that all vibration signatures had the same
reference start position, allowing for the synchronisation of the vibration signature and
shaft position. Figure 4 shows typical vibration signatures of two consecutive revolutions of
a normal condition (NO1), and a faulty condition (F3-largest fatigue crack) gear.

The vibration signature blocks (each with 2048 samples or two driven-gear revolutions)
were time domain averaged to minimize the e!ect of noise. The time-averaged signatures



Figure 3. Layout of experimental rig: 1. Brake calliper; 2. Brake shaft; 3. Brake disc; 4. Universal joint;
5. Movable base plate; 6. Output shaft; 7. Driven gear; 8. Spacer block; 9. Driving gear; 10. Input shaft; 11. Kopp
variatorW; and 12. AC motor.

TABLE 1

Characteristics of test gears

Parameter Driving gear Driven gear

Type MA25-20S MA25-32S
Number of teeth 20 32
Module 2)5 2)5
Face width (mm) 25 25
Pressure angle (deg) 20 20
Helix angle (deg) 0 0
Pitch diameter (mm) 50 80
Material (mild steel) EN8 EN8
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were then processed using the KS test and existing statistical measures (moment analysis).
Figure 5 compares the averaged signal and the raw vibration signature for a good-gear
condition.

The faulty gears were obtained by introducing fatigue cracks to normal operating driven
gears. For this a disc cutter of diameter 55 mm and thickness of 0)3 mm was used. The cut
aimed at replicating a crack at the critical tooth section that grows along the critical stress
line [8]. Figure 6 shows how the three di!erent cuts simulate the crack advancement.

Note that the cuts F1 and F2 stop at 8 and 16 mm (respectively) across the tooth face.
This is indicated in the diagram on the right section of Figure 6. For the large fatigue crack
(F3) the cut covers the whole face of the tooth (25 mm). For a full description of the cut
geometry and dimensions refer Table 2. Figure 7 illustrates the faults being investigated.

In all, vibration signatures (each consisting of 2048 samples) from seven driven gears were
collected. The conditions of these gears were as follows:

f One brand new gear (BN),
f Two gears in normal operating condition (NO1, NO2),
f One worn-out gear (WO*showing signs of pitting and scoring),
f Three gears with introduced fatigue cracks of di!erent severity (F1, F2 and F3).



Figure 4. Typical vibration signature for a good and a faulty condition gear.

Figure 5. Typical vibration signatures: raw and time-averaged signal.
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Figure 6. Schematic diagram of fatigue cut on spur gears.

TABLE 2

Cut geometry and illustration of crack angle

Depth Width Thickness Angle
Gears (mm) (mm) (mm) (deg)

F1 0)8 8 0)3 40
F2 1)6 16 0)3 40
F3 2)4 25 0)3 40

Figure 7. Faults under investigation.
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It must be noted that two gears in normal operating condition were used to ensure that any
changes in the KS value were due to the gear condition, and not simply due to the di!erent
gears, as the comparison of two similar normal condition gears should lead to a high
similarity probability.

From the experimental rig described, 48 vibration signatures (each with two driven gear
revolutions) were recorded for each gear condition. The signatures were locked and aligned
onto the output shaft rotation by means of the trigger signal from the proximity sensor. The
&&aligned'' signatures were grouped into fours, for the time domain average. Hence, for each
gear condition 12 time-averaged vibration signatures were obtained. To these signatures the
KS test was applied. Also, tests using existing techniques such as kurtosis, skewness, form-
and crest-factor were performed, to assess the e!ectiveness of the KS test against other
existing techniques.

Finally, it must be noted that four averages do not fully separate the vibration of the
driven gear from that of the driving gear; for this, many more cycles would have to be
included in the time average. This conscious choice is aimed at showing the e!ectiveness of
the performance of the KS test in systems with little past information (vibration signatures)
available.
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5. EXPERIMENTAL RESULTS

Figure 8 shows the results obtained from the calculation of standard statistical measures
from 12 vibration signatures (from each gear condition). Note that each signature includes
two-gear revolutions (i.e., 2048 samples).

As can be seen, none of the statistical moment measures reliably identify the di!erent gear
conditions. Also, these measures are not able to classify the severity of the di!erent faults,
nor classify the worn out gear (WO) and the faulty gears (F1, F2 and F3).

Figures 9 and 10 show the results obtained by using the KS test to compare the vibration
signatures. Firstly, Figure 9 uses a good gear condition signature as the reference signal for
the comparison. Secondly, Figure 10 uses a vibration signature from the gear condition F3
as a reference signal (crack with greatest severity). The results are displayed in the form of
a similarity probability, where 1 indicates high similarity (hence signals come from gear with
the same/similar condition) and 0 indicates low similarity.
Figure 8. Standard Statistical measures of experimental data: (*]*), BN; (*h*), NO1; (*n*), NO2;
(*e*), WO; (*s*), F1; ()))))])))))), F2; (- -#- -), F3.



Figure 9. KS test using NO1 as a reference signal: (*]*), BN; (*h*), NO1; (*n*), NO2; (*s*), F1;
()))))])))))), F2; (- -#- -), F3; (*e*), WO.

Figure 10. KS test using F3 as a reference signal: (*]*), BN; (*h*), NO1; (*n*), NO2; (*s*), F1;
()))))])))))), F2; (- -#- -), F3; (*e*), WO.

TABLE 3

Experimental results

Comparison
Reference
signal BN NO1 NO2 WO F1 F2 F3

NO1 0)00 0)63 0)38 0)26 0)10 0)00 0)00
F3 0)00 0)00 0)00 0)00 0)29 0)53 0)64
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It must be noted that the reference signal used is not included as a test signal. Hence,
a similarity of 1 is not expected, as this would indicate that the signals are statistically
identical. The collected vibration signatures will contain random noise, which will prevent
signals from being identical.

Finally, based on the results from the analysis of these 12 signatures, the same tests (i.e.,
"rst with NO1 and secondly with F3 as a reference signal) were performed with all the
vibrations signatures. Hence, 24 vibration signatures ("rstly from NO1 and then from F3)
were used for reference and 24 signatures from all other gear conditions were used as test
signals. An average of the results is included in Table 3.

As can be seen when using NO1 as a reference signal the highest similarity arises when
using other cycles from the same gear condition (NO1 and NO2) as a test signal. Similarly,
when using the faulty gear condition (F3) as a reference signal, the highest similarities arise
from the faulty condition gears. Once again, it is important to note that even similar gear
conditions do not give a similarity of 1. This is attributed to the noise present in all the
signatures.
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6. DISCUSSION

This paper showed how the KS test is able to distinguish between vibration signatures
originating from gears in di!erent conditions. The KS test, performed more robustly than
other existing time-domain techniques based on the calculation of the vibration signature
statistical moments.

However, like the moment techniques, the KS test is strongly dependent on the gear
loading and rotational speed, as variations in these parameters a!ect greatly the vibration
amplitude and the fundamental frequency (meshing frequency) in the vibration signatures of
the gears under observation. Preliminary tests suggest that the dependence on load can be
minimized by normalizing the vibration signature amplitude. The results obtained from
these tests are not conclusive, and further tests must be carried out to con"rm this
hypothesis.

It must be noted that the experiment performed here used a simple drive-line consisting of
only one pair of gears. In a more complex drive-line it is possible that the transients induced
by the gear fault may be masked by the vibration of other undamaged gears. This drawback
is intrinsic to any digital signal processing technique applied to vibration condition
monitoring. Ways around this problem include studying the e!ectiveness of the placing
sensor on the gearbox casing, and also the use of time-domain averaging to enhance the
vibration from any speci"c gear under analysis.

Finally, a corollary of the results presented here, suggests the extension of this technique
to a comparison of time}frequency and/or time-scale maps. A generalization of the KS test
to a two-dimensional distribution has already been suggested by Fasano [9], based on
earlier research by Peacock [10]. Again this would form part of a larger automated fault
identi"cation system. The main advantage of this method over the usage of neural networks
for automated pattern recognition lies in the fact that this technique does not require the
computational time and expense intrinsic to the training process of neural networks.

7. CONCLUSIONS

It has been shown that the KS test e!ectively distinguishes vibration signatures by
comparing their CDFs, and can be used for the identi"cation of tooth fatigue cracks on
gears. Furthermore, if a template of possible gear conditions is available, it can be used to
estimate fault advancement. This is shown by the clear trend obtained when using the
vibration signatures from a gear with the largest fatigue crack (F3) as a reference signal. In
this test, a trend showing higher similarity probability for more severe cracks is clearly seen.

The results obtained here also suggest that if a number of vibration signatures from
di!erent gear conditions are available, then it is possible to classify di!erent types of faults,
leading to automated fault detection systems.
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